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J.  Phys. A: Math. Gen. 19 (1986) L1141-L1144. Printed in Great Britain 

LETTER TO THE EDITOR 

A comment on the ‘fine-grained’ quantum ergodic theorem 

Maurice J Wilford 
School of Mathematical and Physical Sciences, University of Sussex, Falmer, Brighton 
BN19QH, U K  

Received 12 August 1986 

Abstract. A sequence of measured values of a property of a quantum mechanical system 
is required to calculate the time average of that property. The implications of using the 
‘projection postulate’ in elementary quantum mechanics during the process is discussed 
in relation to a simple example. 

The rules of quantum mechanics have proved very successful in practice without undue 
attention being attracted to any underlying conceptual problems and work on the 
conceptual foundations of the subject has, if anything, provided support for the 
confidence shown in the applicability of the rules. Such work has, however, focused 
attention on the role of measurement in the theory and the dangers of discussing 
‘unobserved properties’. This letter considers some implications of the apparent neglect 
of the role of measurement in the derivation of the ‘fine-grained’ quantum ergodic 
theorem. 

In classical mechanics the time average ( F )  of some time-dependent property F ( t )  
of a system is defined by 

(1) 

According to standard presentations of the foundations of quantum statistical 
mechanics [l-41 the time average ( F )  of an observable E is, by analogy with the 
classical expression, to be calculated using an equation of the form 

(F)=pli~[~ l T  F( t )d r .  

(2) 
l T  

W) = pm r lo (Wt), f i W t ) l  dt  

where the evolution of a wavefunction *( t )  representing a quantum mechanical system 
with a Hamiltonian I? is determined by the time-dependent Schrodinger equation 

i f i a q / a r  = A*. (3) 
If  the wavefunction at some initial time is represented by 9 ( 0 )  = x k  ak&, where 

qh are the eigenfunctions of the Hamiltonian I? and Ek are the corresponding energy 
eigenvalues, then the wavefunction at a later time t is, according to equation (3), given 
by Y ( t ) = x k  ak exp(-iEkt/fi)4k. The expectation value of the observable 3 at this 
later time is then given by 

(4) ( * ( t ) ,  E*( t ) )  = E  azalFkl exp[-i(El - E k ) f / h ] .  
k. 1 

The standard presentations then argue that two main conclusions follow. 
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( a )  The expectation value given by equation (4) is an  almost periodic function of 
the time and as a consequence the time average (2)  exists but, in general, this time 
average is not necessarily the same as the ‘phase average’ required by statistical 
mechanics [ 1-41. 

( b )  The almost periodic nature of expectation value implies that the system exhibits 
no irreversible behaviour or mixing in the sense of classical ergodic theory and is 
subject to an  even stronger form of ‘PoincarC recurrence’ than in the classical case [3]. 

Two features should be noted. 
( i )  Equation (2) defines a time average of the expectation value of i and the 

calculation must, accordingly, refer to an ‘ensemble’ of systems. 
(ii) The time behaviour of a system is assumed to follow a continuous evolution 

as determined by the Schrodinger equation (3). 
The significance of the latter point, with which this letter is mainly concerned, 

follows from realising that the classical definition (1) attempts to express in mathemati- 
cal form the idea that a time average of some property of a system is determined by 
a sequence of measured (observed, recorded) values of that property. To calculate 
such a quantity in the case of classical mechanics it is assumed that the continuous 
evolution of a system (as determined by the equations of motion) is unaffected, in 
principle, by a sequence of measurements. This is sometimes referred to as macroscopic 
non-invasive measurability. (The expression does, of course, define a continuous time 
averaging process, but it will be expedient to consider the case of a sequence of discrete 
measurements.) 

The rules of elementary quantum mechanics [5] state that the wavefunction $ ( t )  
changes continuously according to equation (3) during intervals of time when no 
measurements are made. At the time of a measurement, however, the wavefunction 
changes discontinuously (‘reduction postulate’ or  ‘collapse of the wavefunction’). The 
state of the system immediately after the measurement process is then determined by 
the result obtained. The use of a continuously evolving solution obtained from equation 
(3) starting from some initial time is, accordingly, in conflict with a satisfactory 
interpretation of a time average since it fails to recognise the effect of the measurement 
process on the state of the system. During the time averaging procedure each measure- 
ment in the sequence exhibits a particular eigenvalue of the observable and there is a 
corresponding reduction of the wavefunction. The reduced wavefunction representing 
the system immediately after a measurement then evolves according to equation (3) 
and this evolved wavefunction determines the probabilities for the possible outcomes 
on the occasion of the next measurement. 

The need to include the effects of the measurement process in the calculation of a 
time average is clear. Less apparent, perhaps, is the need to interpret the limiting time 
behaviour of a system as’the limiting behaviour of a sequence of measured (recorded, 
observed) values, but this does correspond to ‘recognising’ such behaviour in practice. 

A simple example illustrates the procedure (and  at the same time clarifies the use 
of ‘ensembles’-point (i) above). Consider a spin-f particle in a B field directed along 
the z direction. Using standard notation the Hamiltonian fi is given by fi = ( e / m c ) B s z .  
Suppose that the system evolves from the eigenstate of S, corresponding to the 
eigenvalue +fi/2. The wavefunction at the end of an  interval of time 7 is given by 

where the R H S  expresses the result in terms of the eigenstates of the operator sx and 
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where w = eB/mc.  The probability of measuring an x component of spin to be +h /2  
at the end of the interval of time T is C O S ’ ( W T / ~ )  and that of -h/2 is sin’(w~/2). If, 
instead, the system evolves from an initial state corresponding to the eigenvalue -h /2  
then the corresponding probabilities are sin2( w7/2) and cos2( w7/2), respectively. 
Having made a measurement the spin-; particle is in an eigenstate which then evolves 
according to equation (3)  until the next measurement. 

A sequence of observed values is a realisation of a random process and consists 
of a sequence of eigenvalues (in this case there are only two possibilities). By 
introducing an ‘ensemble’ the average behaviour of a large number of similar systems 
can be described. Consider an ensemble of spin-f particles prepared such that the 
initial proportions with spins +h /2  and -h/2 at a time 1 = 0 are given by n+(O) and 
~ ( 0 )  respectively. After an interval of time T the proportions n + ( T )  and n - ( ~ )  are 
given by 

(n+(7))  = ((1 pp, n+(O) 
n - ( T )  (1 P p ) ) ( n - ( O J  

(n+(NT))  = ((1 -PI 

( ( l  pp )  (1 -p )  

where p = sin’(w~/2). 
The distribution after N such intervals, i.e. at the time f = NT, is then given by 

)N(::::;) 

) p )”=(! + (1 - 2p) N / 2  f - ( 1 - 2p) N / 2  

n-( N T )  p (1-P) 

A sequence of measurements conducted with a constant time interval T between 

It is easy to verify (by induction) that 
measurements is, accordingly, represented by a simple Markov chain. 

3 - (1 - 2p) “ / 2  f + (1 - 2p) N / 2  

so that as N + m ,  there exists a limiting ‘equilibrium state’ of the ensemble with 
proportions n+ = f and n- = f provided 0 < p < 1. 

This argument yields the following conclusions. 
( a ’ )  The ‘time average’ is equal to the average corresponding to the final equilibrium 

state. The time average corresponds to the appropriate ‘phase average’ in this case. 
(6‘) Any initial state of the collection, represented by the proportions n+(O) and 

n-(O), evolves during the sequence of measurements to the equilibrium state. This 
limiting time behaviour can be interpreted as an analogue of ‘mixing’. 

If  the time interval T is such that p = sin*(w~/2)  assumes the value 0 or 1 then the 
proportions remain constant or oscillate, respectively. A sequence of measurements 
made at random time intervals clearly yields the same results as for 0 < p < 1 above, 
although in this case the process is no longer a simple Markov chain. A random 
sequence of measurements has, however, the advantage of allowing the inclusion of 
intervals with p = 0 and p = 1 without affecting the conclusions ( a ’ )  and (6‘). 

An analogue of the H theorem for the ensemble (being regarded as a collection 
of systems each of which can exist in one of two possible states) can easily be formulated 
by defining H ( N T )  =Xu=+.- [nu(N~)] log[n,(N~)] .  H ( t  = N T )  is then a monotonically 
decreasing function of the time and attains its minimum value Hmi, = -log2 in the 
equilibrium state. 

The above time behaviour can be compared with that provided by the standard 
argument. This would clearly give oscillating values for the proportions as functions 
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of time. There would be no limiting ‘equilibrium state’ although, of course, the time 
average would exist. 

This simple example illustrates that the interpretation of a time average in terms 
of observed properties has a considerable effect on the sequence of values required 
for its calculation. Furthermore, the operational interpretation of a time average 
exposes the inadequacy of a continuously evolving expectation value and reveals the 
need for observed values. This suggests that the ‘behaviour of a system in time’ might 
also be more appropriately described in terms of ‘observed properties’. The resulting 
time behaviour of a system and, in particular, the limiting time behaviour of an ensemble 
of systems is likely to be very different from that obtained according to the standard 
treatments which simply consider the ‘unobserved evolution’ of the Schrodinger 
equation. This conclusion is not affected by attempts to render the projection postulate 
redundant by developing a ‘theory of measurement’ which basically tries to show that 
a macroscopic system evolves, according to the Schrodinger equation, to a well defined 
macroscopic state (macroscopic realism). Such attempts have not been particularly 
successful and quickly encounter the need to include ergodic properties or some aspect 
of irreversibility. 

The continuous observation of a quantum mechanical system (in time) has been 
discussed in the literature and some difficulties in relation to decay processes noted 
(see, for example, ‘Zeno’s paradox’ [6-91). The problems do not appear to have 
attracted as much attention as the well known ‘paradoxes’ (for example, the EPR 

‘paradox’, Schrodinger’s cat or Wigner’s friend [5,10,11]) which tend to emphasise 
spatial and macrosopic effects (separability, non-locality, macrosopic realism, etc) 
rather than temporal effects. 

Perhaps the conclusion of this letter can be expressed in a provocative form by 
asking whether it is meaningful to discuss the growth of an unobserved tree in the 
quad if the unobserved tree is not there. 
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